Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Кудрявцев Макент Бикаричество СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ Должность: Проректор по образовательной деятельности Дата подписания: 27.06.2023 20:38:56

Уникальный программный ключ:

790a1a8df2525774421adc1fc9645360e9021bf0OE ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ ЗАОЧНЫЙ УНИВЕРСИТЕТ»

Факультет агро- и биотехнологий

Кафедра зоотехнии, производства и переработки продукции животноводства

РАДИОЛОГИЯ

МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ИЗУЧЕНИЮ ДИСЦИПЛИНЫ И ЗАДАНИЯ ДЛЯ КОНТРОЛЬНОЙ РАБОТЫ

студентам 3*, 4 курсов направления подготовки бакалавров 35.03.07 – Технология производства и переработки сельскохозяйственной продукции

Составитель: доцент Артемьева И.О.

УДК 631: 577.34 (076.5)

Сельскохозяйственная радиология: Методические указания по изучению дисциплины и задания для выполнения контрольной работы / Рос. гос. аграр. заоч. ун-т; Сост. Артемьева И.О., М., 2021. 26 с.

Предназначены для студентов 3* и 4 курсов направления подготовки бакалавров 35.03.07 - Технология производства и переработки сельскохозяйственной продукции.

Утверждены методической комиссией зооинженерного факультета ФГБОУ ВО РГАЗУ.

Рецензенты: доцент Мышкина М.С., доцент Саранова О.А. (ФГБОУ ВО РГАЗУ).

Раздел 1. ОБЩИЕ МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ИЗУЧЕНИЮ ДИСЦИПЛИНЫ

Дисциплина «Сельскохозяйственная радиология» относится к дисциплинам вариативной части ООП. Методические указания по данной дисциплине составлены в соответствии с рабочей учебной программой и рабочими учебными планами.

1.1 Цель и задачи дисциплины

Цель дисциплины — формирование у студентов теоретических знаний и практических навыков, направленных на анализ процессов, возникающих при профессиональной деятельности в области мониторинга за выпадением радиоактивных осадков на агробиоценозы, содержанием радионуклидов в сырье и продуктах сельскохозяйственного производства, организации и ведении животноводства в условиях радиоактивного загрязнения среды.

Задачи:

- дать знания основополагающих законов явления радиоактивности и свойств радиоактивных излучений; правил и навыков работы с радиоактивными источниками;
- представить информацию о путях и способах использования загрязненной радионуклидами сельскохозяйственной продукции, а также организации ведения животноводства при радиационных авариях;
- изучить механизм биологического действия ионизирующих излучений на организм животных при внешнем и внутреннем облучении.

Процесс изучения дисциплины направлен на формирование следующих компетенций:

профессиональные компетенции -

в производственно-технологической деятельности:

- готовность реализовывать качество и безопасность сельскохозяйственного сырья и продуктов его переработки в соответствии с требованиями нормативной и законодательной базы (ПК-7);
- готовность реализовывать качество и безопасность сельскохозяйственного сырья и продуктов его переработки в соответствии с (ПК-14);

в научно-исследовательской деятельности:

-готовность к изучению научно-технической информации, отечественного и зарубежного опыта в животноводстве (ПК-21).

В результате изучения дисциплины студент должен:

Знать:

- особенности развития лучевых поражений у разных видов сельскохозяйственных животных;
 - особенности миграции, депонирования и выведения биофильных

радионуклидов в агробиоценозах;

- методы и приемы радиометрической экспертизы сырья, продуктов животноводства и других надзорных объектов;
- основы радиационной безопасности, правила работы с источниками ионизирующих излучений;
- особенности ведения животноводства при радиоактивном загрязнении окружающей среды.

Уметь:

- -осуществлять радиометрическую экспертизу сырья, продуктов животноводства и других надзорных объектов;
- прогнозировать и нормировать поступление радионуклидов в корма, организм животных и продукцию животноводства;
- -обобщать и анализировать опубликованные данные научных исследований и нормативной документации;

Владеть:

- -методами осуществления дозиметрического и радиометрического контроля;
 - методами обработки экспериментальных данных, их обобщению;
- -приемами анализа и интерпретации данных радиометрической экспертизы.

1.2 Библиографический список

Основной

- 1. Радиобиология: учебник [Электронный ресурс] / Н.П. Лысенко [и др.]. СПб : Лань, 2017. 572 с. // Электронно-библиотечная система изд-ва «Лань». Режим доступа: https://e.lanbook.com/book/90856.
- 2. Торшин, С. П. Практикум по сельскохозяйственной радиологии : учебное пособие / С. П. Торшин, Г. А. Смолина, А. С. Пельтцер. Санкт-Петербург : Лань, 2019. 212 с. ISBN 978-5-8114-3285-1. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/111908
- 3. Фокин, А.Д. Сельскохозяйственная радиология: учеб. / А.Д.Фокин, А.А.Лурье, С.П.Торшин. СПб.: Лань, 2011. 416 с.
- 4. Трошин, Е.И. Тесты по радиобиологии: учеб. пособие [Электронный ресурс]: / Е.И. Трошин, Ю.Г. Васильев, И.С. Иванов. СПб: Лань, 2014. 240 с. // Электронно-библиотечная система изд-ва «Лань». Режим доступа: https://e.lanbook.com/book/49474.

Дополнительный

5. Радиобиология. Радиационная безопасность с.-х.животных : учеб. пособие для вузов / под ред. В.А.Бударков, А.С.Зенкин. - М. : КолосС, 2008. - 351с.

- 6. Практикум по радиобиологии: учеб. пособие для вузов / Н.П.Лысенко и др. М.: КолосС, 2007. 399 с.
- 7. Верещако, Г.Г. Радиобиология: термины и понятия: энцикл. справочник [Электронный ресурс] : справ. / Г.Г. Верещако, А.М. Ходосовская.
- Минск : , 2016. 340 с. // Электронно-библиотечная система изд-ва «Лань».
- Режим доступа: https://e.lanbook.com/book/90414.
 - 8. Журналы «Зоотехния», «Ветеринария», «С.-х. биология», «Экология».

Сайты Интернета

- 9. Портал [Электронный ресурс]. –http://www.chernobyl.info/
- 10. Портал [Электронный ресурс]. http://www.cnshb.ru
- 11. Портал [Электронный ресурс]. http://mcx.ru

1.3 Распределение учебного времени по модулям (разделам) и темам дисциплины

Таблица 1

			E			
№ п.п.	Наименование модулей и тем дисциплины	Всего, ч	Лекции	Лабораторные занятия	Самостоятельная работа	Рекомендуемая литература
1	2	3	4	5	6	7
M	одуль 1. Физические основы радиологии	34 (33)	1 (1)	3 (2)	30 (30)	1, 2, 3
1.1	Тема 1. Учение о радиоактивности	15 (16)	-	1 (1)	14 (15)	1, 2, 3
1.2	Тема 2. Дозиметрия и радиометрия излучений	19 (17)	1(1)	2 (1)	16 (15)	1, 2, 3
Мод	цуль 2. Биологическое действие и лучевые поражения	31 (32)	2 (1)	2 (1)	27 (30)	1, 2, 6, 7
2.1	Тема 1. Действие радиации на биологические объекты	17 (17)	1(1)	1 (-)	15 (16)	1, 2, 6, 7
2.2	Тема 2. Лучевые поражения	14 (15)	1 (-)	1 (1)	12 (14)	1, 7
7	Модуль 3. Основы радиоэкологии и гоксикологии радиоактивных веществ	31 (30)	3 (-)	1 (-)	27 (30)	3, 5, 6, 7
3.1	Тема 1. Основы радиэкологии	16 (20)	1 (-)	1	15 (20)	3, 5, 6, 7
3.2	Тема 2. Радиотоксикология	15 (10)	2 (-)	1 (-)	12 (10)	6
Мод	уль 4. Радиационная экспертиза кормов и продукции животноводства	31 (30)	1 (1)	3 (2)	27 (27)	5, 8, 9,10, 11
Мод	уль 5. Ведение животноводства в условиях радиоактивного загрязнения среды	17 (19)	1 (1)	1 (1)	15 (17)	1, 2, 8
	Итого	144 (144)	8 (4)	10 (6)	126 (134)	

Примечание: в скобках указаны часы для студентов с сокращенным сроком обучения

Раздел 2. СОДЕРЖАНИЕ УЧЕБНЫХ МОДУЛЕЙ ДИСЦИПЛИНЫ И МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ИХ ИЗУЧЕНИЮ

2.1 Модуль 1. Физические основы радиологии

2.1.1 Содержание модуля

Учение о радиоактивности. Характеристика атома. Изотопы. Явление Закон радиоактивного распада. Типы радиоактивного радиоактивности. распада. Виды излучений и их свойства. Взаимодействие излучений с Проникающая способность излучений. Закон веществом. поглощения излучений вешеством. Состав И свойства основных радионуклидов. Статистический характер радиоактивного распада. Активность радионуклидов, единицы. Химические свойства основных радионуклидов. Химические формы основных радионуклидных выпадений. Основы получения, выделения разделения и концентрирования радионуклидов. Первичные и вторичные химические процессы под воздействием излучений.

Дозиметрия и радиометрия излучений. Доза излучения и ее мощность. Единицы измерения дозы. Относительная биологическая эффективность (ОБЭ) видов излучения. Ионизационные методы детектирования. разных Классификация радиометрических, Классификация счетчиков. дозиметрических И спектрометрических приборов. Основные методы измерения радиоактивности (сравнительный, относительный и абсолютный).

2.1.2 Методические указания по изучению модуля 1

Начинать изучение данного модуля необходимо с освоения ряда базовых понятий. В разделе 3 приводятся основные определения, формулы, их краткие объяснения, примеры, а в конце настоящих указаний, в Приложении, ряд справочных таблиц, необходимых для решения задач.

2.1.3 Вопросы для самоконтроля

1. Какие элементарные частицы входят в состав атома? 2. Что такое явление изотопии? 3. Что такое радиоактивность? 4. Что такое естественная и искусственная радиоактивность? 5. Причины возникновения естественной и искусственной радиоактивности. 6. Типы ядерных превращений. 7. Закон радиоактивного распада. 8. Практическое значение закона радиоактивного распада? 9. Какие эффекты возникают при взаимодействии заряженных частиц с веществом? 10. Какие эффекты возникают при взаимодействии нейтронов с веществом? 11. В чем существенное отличие характера ослабления гамма-излучения от ослабления потока альфа- и бета-частиц? 12. Что такое дозиметрия и радиометрия?

2.1.4 Задания для самостоятельной работы

- 1. Как изменяется соотношение протонов и нейтронов в ядрах атомов в зависимости от положения в таблице Д.И.Менделеева?
 - а) не изменяется
 - б) соотношение увеличивается
 - в) соотношение уменьшается
- 2. Период полураспада радионуклидов это:
 - а) время распада половины атомов
 - б) количество распадающихся атомов
 - в) число распадающихся атомов
 - г) число распавшихся атомов
 - д) время, в течение которого происходит распад
- 3. Единица радиоактивности в системе СИ
 - а) кюри/с
 - б) беккерель
 - в) грэй
 - г) рад
 - д) рентген/ч
- 4. Вид излучения, обладающий наибольшей проникающей способностью
 - а) гамма
 - б) альфа
 - в) бета
- 5. Атомы, имеющие ядра с одинаковым числом протонов, но различающиеся по числу нейтронов
 - а) изотопы
 - б) изобары
 - в) изомеры
 - г) нуклиды
- 6. Свойство ядер определенных элементов самопроизвольно превращаться в ядра других элементов с испусканием излучения
 - а) радиоактивность
 - б) реактивность
 - в) нейтральность
 - г) агрессивность
- 7. Единица активности нуклида в системе СИ
 - а) Рентген
 - б) Рад
 - в) Беккерель
 - г) Кюри
 - д) Бэр
 - е) Зиверт

2.2 Модуль 2. Биологическое действие и лучевые поражения

2.2.1 Содержание модуля

Действие радиации на биологические объекты. Радиобиологические эффекты на различных уровнях структурной организации живого вещества:

молекулярном, клеточном и субклеточном, на уровне отдельных органов, организма, популяции. Прямое и косвенное действие облучения, теория мишени. Соматические и генетические, стохастические и детерминированные эффекты действия излучений. Зависимость «доза - радиобиологические эффекты». Радиопротекторы. Радиобиологическая устойчивость в эволюционном ряду организмов.

Лучевые поражения. Радиочувствительность различных тканей и органов. Кривая Раевского. Лучевые синдромы. Лучевая болезнь, ее формы при внешнем и внутреннем облучении. Биологические и клинические проявления лучевого поражения. Особенности у разных видов сельскохозяйственных животных. Последствия мутаций - лейкозы, рак, нарушения иммуногенеза. Действие на зародыш и потомство. Стимулирующий эффект малых доз.

2.2.2 Методические указания по изучению модуля 2

Ионизация атомов и молекул. Радиолиз воды. Образование свободных радикалов. Кислородный эффект. Перекись водорода. Рекомбинация свободных радикалов. Радиотоксины. Перекисное окисление липидов. Проницаемость мембран. Изменение транспорта веществ. Действие на клетки. Правило Бергонье и Трибондо. Механизм действия радиации. Теория мишеней. Структурно-метаболическая гипотеза. Действие на организм животных. Радиочувствительность различных тканей. Лучевые синдромы (костномозговой, желудочно-кишечный и церебральный).

2.2.3 Вопросы для самоконтроля

- 1. Каковы особенности биологического действия радиации как этиологического фактора?
 - 2. В чем суть теорий, объясняющих прямое действие радиации?
- 3. Как характеризуются опосредованные пути воздействия ионизирующего излучения на организм?
 - 4. Каков механизм биологического действия ионизирующего излучения?
- 5. Какие ткани и клетки животного организма наиболее чувствительны к ионизирующей радиации и с чем это связано?
 - 6. Каков патогенез лучевой болезни и лучевых поражений?
 - 7. На основании каких данных ставят диагноз на лучевую болезнь?
- 8.В чем сущность комплексного лечения животных при лучевой болезни?

2.2.4 Задания для самостоятельной работы

- 1.Ткань организма животного, обладающая наибольшей радио чувствительностью?
 - а) мышечная (поперечнополосатая)
 - б) соединительная (жировая)
 - в) эпителиальная (генеративная)
 - г) соединительная (костная)

- 2. Какой вид излучения вызывает лучевые ожоги?
- а) инфракрасное
- б) нейтронное
- в) гамма
- г) бета
- д) альфа
- 3. Количество периодов острой лучевой болезни средней степени тяжести
- а) два
- б) три
- в) четыре
- аткп (1
- д) шесть
- 4. Наименование периода кажущегося благополучия острой лучевой болезни
- а) латентный
- б) первичных реакций
- в) разгара
- г) разрешения
- 5. Один из симптомов лучевого ожога
- а) эпиляция
- б) десквамация
- в) паралич
- г) денатурация
- 6. Наиболее радиочувствительная клетка крови
- а) лимфоцит
- б) эозинофил
- в) нейтрофил
- г) эритроцит
- д) базофил
- 7. Характерный симптом радиационного поражения животных, наблюдающийся вследствие нарушения системы свертываемости крови
 - а) геморрагический
 - б) эпиляция
 - в) регенерация
 - г) десквамация
 - д) дегенерация

2.3 Модуль 3. Основы радиоэкологии и токсикологии радиоактивных веществ

2.3.1 Содержание модуля

Основы радиэкологии. Естественные и искусственные источники ионизирующих излучений. Радиационный фон. Испытания ядерного оружия. Ядерная энергетика. Последствия аварий на атомных АЭС. Радиоэкология и ее задачи. Источники и пути поступления радионуклидов во внешнюю среду. Физико-химическое состояние радионуклидов в воде, почвах, кормах, органах и тканях животных. Миграция радионуклидов по биологическим цепочкам: почва — растение — животное — продукты животноводства, растениеводства —

человек. Переход радионуклидов в продукцию животноводства. Особенности накопления радионуклидов в продукции животноводства.

Радиотоксикология. Классификация радионуклидов по степени радиотоксичности. Закономерности метаболизма радионуклидов в организме. Пути поступления и распределения. Типы распределения. Понятие о критическом органе. Эффективный период полувыведения. Токсикологическая характеристика стронция-90, цезия-134, -137, йода- 131, полония- 210.

2.3.2 Методические указания по изучению модуля 3

Основные компоненты естественного радиационного фона на Земле.

Ралиоактивные семейства. Растительные животные И объекты накапливающие Причины естественные радионуклиды. увеличения естественного радиоактивного фона. Назовите основные этапы хроники наземных и подземных испытаний ядерного оружия. Глобальные выпадения радионуклидов. Значимость ядерной энергетики в общем объеме производства электроэнергии (в России и других странах). Проблемы радиоактивных отходов. Захоронение радиоактивных отходов. Крупнейшие радиационные аварии на территории России. Их последствия. Особенности загрязнения почв «топливными (или горячими) частицами». трансурановых элементов в долгосрочном прогнозе радионуклидного загрязнения биосферы. Влияние на радиоактивное загрязнение местности метеоусловия во время аварийной ситуации. Особенности радиоактивного загрязнения естественных водоемов (из атмосферных источников).

2.3.3 Вопросы для самоконтроля

- 1. Какие научно-практические вопросы решает сельскохозяйственная радиоэкология?
- 2.Под влиянием каких факторов формируются естественные и искусственные источники ионизирующих излучений?
- 3. Каким образом происходит радионуклидное загрязнение окружающей среды?
 - 4. Что такое сельскохозяйственная пищевая цепочка?
- 5.Как радионуклиды поступают в организм сельскохозяйственных животных?
- 6. Каковы основные закономерности поступления радионуклидов в молоко, яйца и другую продукцию животноводства?
 - 7. Что обусловливает токсичность радионуклидов для человека?
- 8.Каковы основные пути поступления радионуклидов в организм человека?
- 9. Каковы особенности накопления и выведения радионуклидов при разовом и хроническом их поступлении с кормом?

2.3.4 Задания для самостоятельной работы

1. Величина естественного радиационного фона для Европейской части России

- а) 1-2 мкр/ч
- б) 10-20 мкр/ч
- в) 20-40 мкр/ч
- г) 40-80 мкр/ч
- 2. Частное от деления числа стронциевых единиц в данной пробе на число стронциевых единиц в предшествующем звене биоценоза
 - а) коэффициент опасения
 - б) коэффициент дискриминации
 - в) коэффициент реактивность
 - г) коэффициент восстановления
- 3. Экологически значимый радионуклид, накапливающийся в тканях организма животного, физиологически богатых кальцием
 - а) стронций-90
 - б) углерод-14
 - в) йод-131
 - г) кобальт-60
 - д) марганец-54
- 4. Укажите радионуклид, присутствие которого свидетельствует о том, что радиоактивные осадки «молодые»?
 - а) калий-40
 - б) стронций-90
 - в) цезий-137
 - г) йод-131
 - 5. Орган, входящий в первую группу критических органов
 - а) гонады
 - б) печень
 - в) селезёнка
 - г) легкие
 - д) кожный покров
 - 6. Остеотропный радионуклид
 - а) стронций
 - б) цезий
 - в) церий
 - г) йод
 - 7. Тиреотропный изотоп
 - а) йод
 - б) стронций
 - в) радий
 - г) барий
 - 8. При каком варианте облучения альфа-частицы наиболее опасны?
 - а) внешнее
 - б) внутреннее
 - в) комбинированное
 - г) острое

2.4 Модуль 4. Радиационная экспертиза кормов и продукции животноводства

2.4.1 Содержание модуля

Система и методы радиологического контроля. Положение о системе государственного ветеринарного радиологического контроля Российской Федерации. Основные принципы организации радиологического контроля в ветеринарии. Методы радиологического контроля. Цель и задачи ветеринарной радиометрической экспертизы объектов ветнадзора. Последовательные этапы ее выполнения. Объекты исследования, правила отбора и пересылки проб. Экспрессные и лабораторные методы радиационной экспертизы. Измерение суммарной бета-активности. Экспрессные методы определения стронция-90, цезия-137 и йода-131. Экспрессные методы измерения радиоактивности по гамма-излучению. Экспресс-метод радиационного контроля на продовольственных рынках. Прижизненный радиационный контроль. Оценка данных радиометрического контроля.

2.4.2 Методические указания по изучению модуля 4

Контроль радиационного состояния внешней среды как за счет естественных, так и искусственных радионуклидов. Определение уровней радиационного фона в различных районах территории и выяснение их влияния на биологические объекты и биоценозы. Предупреждение и недопущение поступления радионуклидов из внешней среды в организм животных в недопустимых количествах. Предупреждение и недопущение пищевого и продуктов животного происхождения, технического использования сырых содержащих радионуклиды В недопустимых концентрациях. Отбор и подготовку проб к исследованию, их радиометрию и радиохимический анализ. ветеринарно-санитарного контроля. Сроки и нормы отбора проб ДЛЯ исследование проб Радиометрическое на суммарную бета-активность. Выяснение изотопного состава радионуклидов в кормах и других объектах посредством радиохимического анализа. Предельно допустимое содержание радионуклидов в рационах человека и животных.

2.4.3 Вопросы для самоконтроля

- 1. Основные цели и задачи радиационного контроля?
- 2. Какая система радиационного контроля объектов ветеринарного надзора используется при глобальных выпадениях радиоактивных веществ?
- 3. На чем основаны методы прижизненного определения радионуклидов в организме животных?
- 4. Каковы общие правила отбора и подготовки проб кормов и продуктов животноводства для радиационной экспертизы?
 - 5. В чем состоит роль носителей в радиохимическом анализе?
- 6. Как определяется радиохимическая чистота радионуклидов, полученных после радиохимического анализа?

7. Из каких этапов состоит радиохимический анализ?

2.4.4 Задания для самостоятельной работы

- 1. Наиболее широко применяемый на практике метод определения радиоактивности
 - а) относительный
 - б) абсолютный
 - в) реактивный
 - г) нейтрализации
- 2. Радионуклид, определяемый в объектах зооветеринарного надзора при радиометрической экспертизе
 - а) стронций
 - б) радий
 - в) барий
 - г) торий
 - д) актиний
- 3. Наименование химического элемента учитываемого при расчете стронциевой единицы?
 - а) йод
 - б) цезий
 - в) калий
 - г) натрий
 - д) кальций
- 4. Химический элемент, конкурирующий с радионуклидом цезия в агробиоценозах
 - а) калий
 - б) кальций
 - в) фосфор
 - г) углевод
 - д) азот
 - 5. Орган, в котором происходит избирательная концентрация радионуклида
 - а) критический
 - б) центральный
 - в) накопительный
 - г) радиочувствительный
 - 6. Срок отбора проб мяса для радиометрической экспертизы:
 - а) ежемесячно
 - б) ежеквартально
 - в) весной и осенью
 - г) летом и зимой
 - д) раз в год
 - 7. Срок отбора проб молока для радиометрической экспертизы:
 - а) ежемесячно
 - б) ежеквартально
 - в) два раза в год
 - г) один раз в год

2.5 Модуль 5. Ведение животноводства в условиях радиоактивного загрязнения среды

2.5.1 Содержание модуля

Организация и ведение животноводства в условиях радиоактивного загрязнения. Использование кормов, кормовых угодий, животных и продукции животноводства, загрязненных радионуклидами. Организация и проведение мероприятий, направленных на снижение поступления радионуклидов в сельскохозяйственные растения и продукцию животноводства в условиях радиоактивного загрязнения среды. Технологические способы переработки загрязненной радионуклидами животноводческой продукции.

2.5.2 Методические указания по изучению модуля 5

Основные последствия для сельскохозяйственного производства самой крупной в мире чернобыльской атомной катастрофы. Прогнозирование накопления радионуклидов в кормах, а также молоке и мясе, выращиваемых на загрязненной радионуклидами территории. Основные пути использования загрязненных сельскохозяйственных угодий. Приемы снижения накопления радионуклидов в кормах, получаемых с загрязненных угодий. Принципы нормирования поступления радионуклидов в организм сельскохозяйственных животных. Организация ведения животноводства загрязненной на радионуклидами территории. Пути использования молока и мяса, загрязненных радиоизотопами йода, в пищу человека. Дезактивация молока, загрязненного ¹³⁷Cs. снижения Приемы загрязненности радионуклидами полученной животноводческой продукции.

2.5.3 Вопросы для самоконтроля знаний

- 1. Как организовать ведение животноводства на загрязненной территории?
- 2. Каковы особенности проведения ветеринарных мероприятий в условиях радиоактивного загрязнения среды?
- 3. Каким образом можно использовать молоко и мясо, загрязненные радиоизотопами йода, в пищу человека?
 - 4. Каким образом можно дезактивировать молоко, загрязненное ¹³⁷Cs?
- 5. Как прогнозировать накопление радионуклидов в получаемом молоке и мясе?
- 6. Каковы основные пути использования загрязненных сельскохозяйственных угодий?
- 7. Что можно сделать для снижения накопления радионуклидов в кормах, получаемых с загрязненных угодий?
- 8.Каковы принципы нормирования поступления радионуклидов в организм сельскохозяйственных животных?

2.5.4 Задания для самостоятельной работы

1. Какие удобрения следует вносить в почву с целью уменьшения накопления в растениях радионуклида цезия-137?

- а) калийные
- б) фосфорные
- в) азотные
- г) известковые
- д) магниевые
- 2. В какой части растения фасоли стронций-90 будут накапливаться в меньшей степени?
 - а) листья
 - б) стебли
 - в) створки бобов
 - г) бобы
- 3. Вид сельскохозяйственных животных наиболее устойчивый к действию ядерной радиации?
 - а) птицы
 - б) кролики
 - в) овцы
 - г) свиньи
 - д) крупный рогатый скот
- 4. Какие удобрения следует вносить в почву с целью уменьшения накопления в растениях радионуклида стронция-90?
 - а) азотные
 - б) известковые
 - в) калийные
 - г) магниевые
 - д) фосфорные
 - 5. Величина естественного радиационного фона для Европейской части России
 - а) 1-2 мкр/ч
 - б) 10-20 мкр/ч
 - в) 20-40 мкр/ч
 - г) 40-80 мкр/ч
- 6. Размерность удельной радиоактивности, используемая для выражения уровня загрязнения территории радионуклидами
 - a) Ки/км²
 - δ) Р/км²
 - в) $Pag/км^2$
 - Γ) $3B/KM^2$
- 7. Уровень загрязнения территории радионуклидами ¹³⁷Cs при котором допускается ведение сельскохозяйственного производства без каких-либо ограничений
 - a) менее 1.0 Ku/км^2
 - б) менее $1.5 \, \text{Ки/км}^2$
 - в) менее 2.0 Ku/кm^2
 - Γ) менее 2,5 Ки/км²
- 8. Уровень загрязнения территории радионуклидами ⁹⁰Sr при котором допускается ведение сельскохозяйственного производства без каких-либо ограничений
 - а) менее $0,15 \text{ Ки/км}^2$

- б) менее $0.30 \, \text{Ku/км}^2$
- в) менее $0,60 \text{ Ku/км}^2$
- Γ) менее 1,2 Ки/км²

Раздел 3. ЗАДАНИЯ ДЛЯ КОНТРОЛЬНОЙ РАБОТЫ И МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ЕЕ ВЫПОЛНЕНИЮ

3.1 Методические указания по выполнению контрольной работы

Начинать освоение "Сельскохозяйственной радиологии" следует с изучения учебного материала в объеме программы дисциплины, и лишь после этого приступить к выполнению контрольной работы.

Контрольная работа выполняется на компьютере. Необходимо использовать текстовый редактор Word. Параметры страницы формат A4, межстрочный интервал полуторный, шрифт Times New Roman, размер шрифта 14, абзацный отступ – 1 см, выравнивание по ширине.

Допускается выполнение контрольной работы в школьной тетради объемом не менее 12 листов. Если тетрадь в клетку, то надлежит писать через один ряд клеток. На каждом листе надо оставлять поле для пометок преподавателя.

В конце работы приводится список использованной литературы.

Завершается работа подписью студента и датой.

Титульный лист должен содержать названия университета, факультета и кафедры; шифр и название специальности; название дисциплины; Ф.И.О. и шифр студента; Ф.И.О. и должность преподавателя-рецензента настоящей контрольной работы.

Листы, за исключением титульного листа, нумеруются в правом верхнем углу.

Контрольная работа состоит из пяти заданий. Номера заданий студент определяет по предпоследней и последней цифрам личного учебного шифра (см. табл. 2). Например, при шифре 4078 необходимо выбрать следующие номера заданий: 2, 24, 46, 67, 73.

На первой странице следует перечислить выбранные номера заданий. Перед началом каждого ответа написать соответствующие номер и содержание задания без сокращений.

При изложении материала по заданию желательно воспользоваться несколькими рекомендованными учебниками и дополнительной литературой (см. выше).

3.2 Задания для контрольной работы

- 1. Сельскохозяйственная радиология как наука. Основные этапы ее становления.
- 2. Строение атома. Характеристика элементарных частиц, входящих в его состав.
- 3. Ядерные силы, их характеристика. Дефект массы и энергия связи нуклонов.

- 4. Явление радиоактивности. Естественная радиоактивность, радиоактивные семейства.
 - 5. Характеристика радиоактивных излучений (α- и β- частицы, γ- кванты).
 - 6. Типы ядерных превращений.
 - 7. Стабильные и нестабильные изотопы.
 - 8. Закон радиоактивного распада.
 - 9. Активность радиоактивного элемента, единицы активности.
 - 10. Взаимодействия гамма-излучения с веществом.
 - 11. Взаимодействия альфа- и бета-частиц с веществом.
 - 12. Доза излучения и мощность дозы.
 - 13. Экспозиционная доза излучения, единицы.
 - 14. Поглощенная доза излучения, единицы.
- 15. Коэффициент относительной биологической эффективности и эквивалентная доза.
- 16. Соотношение между активностью радиоактивных препаратов и дозой, создаваемой, создаваемой их гамма-излучением.
 - 17. Принцип расчета доз при внутреннем облучении.
 - 18. Характеристики ионизационных детекторов излучений.
 - 19. Характеристика сцинтилляционных счетчиков.
 - 20. Основные методы измерения радиоактивности.
- 21. Удельная активность 131 Ј 1 июня составляла 8 мКи/мл. Сколько миллилитров изотонического раствора 131 Ј надо ввести животному 15 июня, чтобы в них содержался препарат активностью 10 мКи?
- 22. Удельная активность радиоактивного препарата ⁹⁰Sr составила на 1 апреля 20 мКи/мл. Рассчитать удельную активность препарата спустя 6 мес.
- 23. Для определения скорости кровотока в большом кругу кровообращения животному в вену необходимо ввести изотонический раствор, содержащий радионуклид ²⁴Na активностью 60 мкКи. Определить, какое количество раствора (мл) надо ввести, если раствор приготовлен с удельной активностью 230 мкКи/мл за 3 ч до введения.

24. Рассчитать экспозиционную дозу, создаваемую точечным источником γ -излучения радионуклида, активностью A на расстоянии r за время t. Значения и размерность A_x , r и t приведены в следующей таблице:

№ варианта*	Изотоп	Активность, мг-экв. Ra	Расстояние, r (м)	Время, t (ч)
0	²² Na	250	3,5	15
1	²⁴ Na	20	2,5	12
2	⁵⁹ Fe	50	2,0	10
3	⁶⁰ Co	30	1,5	8
4	⁶⁵ Zn	120	1,0	6
5	¹³¹ I	150	0,5	5
6	¹³⁷ Cs	100	0,4	3
7	¹⁷⁰ Tm	250	0,3	2
8	²⁰³ Hg	200	0,2	1
9	^{238}U	350	0,1	0,5

Примечание: номер варианта соответствует последней цифре учебного шифра студента

25. Рассчитать экспозиционную дозу, создаваемую точечным источником γ -излучения радионуклида, активностью A на расстоянии r за t часов. Значения и размерность A_x , r и t, а также гамма-постоянной изотопа приведены в следующей таблице:

№ варианта*	Изотоп	Активность, мКи	Расстояние, r (м)	Время, t (ч)	Гамма постоянная, Кү
0	Na ²⁴	250	3,5	15	19,06
1	K^{40}	200	2,5	12	0,81
2	Fe ⁵⁹	500	2,0	10	6,25
3	Co ⁶⁰	300	1,5	8	13,3
4	I ¹³¹	1200	1,0	6	2,3
5	Cs ¹³⁷	1500	0,5	5	3,5
6	Cs ¹³⁷	1000	0,4	3	3,5
7	Ra ²²⁶	2500	0,3	2	8,4
8	Ra ²²⁶	2000	0,2	1	8,4
9	Ra ²²⁶	3500	0,1	0,5	8,4

Примечание: номер варианта соответствует последней цифре учебного шифра студента.

- 26. Корова находится на расстоянии 10 м, а свинья на расстоянии 20 м от точечного источника Co^{60} активностью 20 мг-экв. радия. Рассчитать во сколько раз изменится экспозиционная доза на поверхности кожи свиньи, если экспозиция в одном и другом случаях составляет 60 мин.
- 27. Рассчитать эквивалентные дозы, полученные двумя группами животных, если физические поглощенные дозы оказались одинаковыми и составили 10 рад, но у одной группы от бета-источника, а у другой от альфа-источника.
- 28. Рассчитать величину эквивалентной дозы, полученную животным за 3 ч, если мощность дозы у поверхности тела составляла 32 мР/ч от гамма-источника.
- 29. Рассчитать величину поглощенной дозы (рад), получаемую работником за время работы с радиоактивными веществами. Данные взять из следующей таблицы:

№ варианта*	0	1	2	3	4	5	6	7	8	9
Мощность дозы, мр/с	1,5	4,0	5,0	3,5	8,0	10	2,5	3,0	2,8	1,0
Время работы, t (ч)	30	15	20	45	10	15	16	25	10	36

Примечание: номер варианта соответствует последней цифре учебного шифра студента.

- 30. Цель и задачи сельскохозяйственной радиоэкологии.
- 31. Общие закономерности перемещения радиоактивных веществ в биосфере.
 - 32. Пути поступления радионуклидов в организм и их распределение.
 - 33. Факторы, обусловливающие токсичность радионуклидов.
 - 34. Группы радиотоксичности радионуклидов.
 - 35. Естественные источники ионизирующих излучений.

- 36. Характеристика радиационного фона Земли.
- 37. Искусственные источники ионизирующих излучений.
- 38. Пути поступления радионуклидов во внешнюю среду.
- 39. Физико-химическое состояние радионуклидов в воде, почве и кормах.
- 40. Некорневое поступление радионуклидов в кормовые культуры и загрязнение ими продукции животноводства.
 - 41. Миграция радионуклидов по сельскохозяйственным цепочкам.
 - 42. Поступление радионуклидов в молоко животных.
 - 43. Поступление радионуклидов в яйца кур-несушек.
 - 44. Накопление радионуклидов в органах и тканях.
 - 45. Выделение радионуклидов из организма.
 - 46. Метаболизм и токсикология молодых продуктов деления.
 - 47. Метаболизм и токсикология йода-131.
 - 48. Метаболизм и токсикология стронция-90.
 - 49. Метаболизм и токсикология цезия-137.
 - 50. Прогноз поступления радионуклидов в продукцию растениеводства.
 - 51. Прогноз поступления радионуклидов в продукцию животноводства.
 - 52. Использование кормовых угодий, загрязненных радионуклидами.
- 53. Нормирование поступления радионуклидов в организм сельскохозяйственных животных.
- 54. Режим питания и содержания животных при радиоактивном загрязнении среды.
- 55. Использование веществ, ускоряющих выведение радионуклидов из организма животных с целью получения пригодной в пищу продукции.
- 56. Особенности проведения ветеринарный мероприятий в зонах радионуклидного загрязнения.
- 57. Пути использования кормовых угодий, кормов, животных и продукции животноводства, загрязненных радионуклидами.
- 58. Переход радионуклидов в продукцию животноводства после разового поступления в организм.
- 59. Накопление радионуклидов в тканях животных при хроническом поступлении в организм.
- 60. Влияние разных факторов на переход радионуклидов из рациона животных в продукцию животноводства.
- 61. Цель и задачи радиометрической и радиохимической экспертизы объектов ветеринарного надзора.
 - 62. Правила отбора и подготовки проб к радиометрической экспертизе.
- 63. Технологические приемы переработки загрязнений радионуклидами продукции животноводства.
 - 64. Механизм биологического действия ионизирующих излучений
 - 65. Теории прямого действия радиации.
 - 66. Теории непрямого действия радиации.
 - 67. Характеристика процесса радиолиза воды.

- 68. Теория липидных радиотоксинов и структурно-метаболическая теория радиационного поражения.
 - 69. Опосредованное действие радиации.
 - 70. Радиочувствительность животных.
 - 71. Радиочувствительность клеток. Правило Бергонье и Трибондо.
 - 72. Влияние ионизирующих излучений на нервную систему.
 - 73. Влияние ионизирующей радиации на органы чувств.
 - 74. Влияние ионизирующих излучений на кожу и соединительную ткань.
 - 75. Влияние ионизирующих излучений на эндокринные железы.
 - 76. Влияние ионизирующих излучений на кровь и кроветворные органы.
 - 77. Влияние ионизирующих излучений на органы пищеварения.
- 78. Влияние ионизирующих излучений на сердечно-сосудистую систему и органы дыхания.
- 79. Влияние ионизирующих излучений на органы размножения и потомство животных.
- 80. Влияние ионизирующих излучений на иммунологическую реактивность животных.
- 81. Значение естественной радиоактивности и малых доз ионизирующих излучений в биологических процессах.
 - 82. Лучевая болезнь сельскохозяйственных животных.
 - 83. Лучевые (радиационные) ожоги кожных покровов у животных.
 - 84. Отдаленные последствия действия радиации.
- 85. Использование радионуклидов в качестве индикаторов (меченых атомов).
 - 86. Радиоиммунологический метод анализа.
- 87. Использование радионуклидов и ионизирующих излучений для диагностики болезней животных.
 - 88. Использование ионизирующих излучений в животноводстве.
 - 89. Основы радиационной безопасности.
- 90. Организация работы с источниками ионизирующих излучений. Средства индивидуальной защиты.

 Таблица 2

 Таблица для определения перечня контрольных вопросов и задач

Предпоследняя			Пос	следняя	цифра н	юмера з	ачетной кн	ижки		
цифра номера						•				
зачетной	0	1	2	3	4	5	6	7	8	9
книжки										
	1,28,	5,21,	2,24,	3,8,	4,30,	6,24,	7,25,	2,23,	8,29,	9,30,
0	35,	32,	45,	25,	59,	41,	34,	45,	58,	47,
	55,67	59,73	55,71	56,79	71,86	52,74	49,82	51,62	60,74	54,56
	9,24,	6,23,	10,25,	26,45,	7,24,	25,15,	9,21,	9,30,	1,24,	2,23,
1	46,	33,	56,	55,	58,	47,	46,	45,	75,	56,
	52,74	54,66	67,74	79,90	63,87	59,76	56,72	74,87	78,89	60,71
	4,25,	4,26,	4,21,	10,23,	11,30,	13,22,	29,34,	15,21,	4,25,	5,22,
2	58,	50,	61,	57,	68,	46,	45,	51,	52,	55,
	61,75	64,71	70,84	75,89	71,84	60,74	66,78	58,78	62,85	71,87
	5,24,	2,25,	3,27,	3,30,	4,30,	6,22,	7,28,	8,24,	10,22,	7,24,
3	61,	47,	53,	42,	46,	48,	46,49,78	47,	57,	48,
	79,85	60,90	68,73	50,77	71,86	59,67		54,69	69,71	53,75
	9,29,	14,28,	24,36,	4,30,	8,25,	3,23,	8,26,	10,24,	11,30,	1,21,
4	50,	59,	44,	44,	54,	35,	46,	65,	48,	34,
	52,90	68,88	74,80	53,79	66,79	50,79	56,79	73,85	53,68	60,70
	8,22,	15,30,	2,22,	5,25,	11,21,	12,22,	13,23,	5,24,	6,25,	7,27,
5	60,	58,	50,	65,	57,	50,	58,	32,	47,	44,
	69,78	78,89	67,79	76,82	76,87	61,90	69,74	67,80	52,68	59,61
	4,26,	6,29,	7,27,	13,29,	5,30,	23,42,	12,29,	13,25,	2,24,	3,30,
6	58,	51,	46,	64,	55,	55,	57,	48,	52,	41,
	67,79	73,85	70,80	70,89	72,86	64,72	70,80	62,75	64,72	55,60
	4,28,	9,21,	10,23,	11,30,	12,25,	3,26,	8,29,	9,22,	2,24,	9,25,
7	45,	43,	56,	49,	44,	49,	31,	74,	46,	64,75,88
	70,89	57,68	60,71	56,62	58,90	72,84	42,63	78,89	67,73	
	14,29,	3,28,	4,23,	1,27,	14,26,	15,21,	12,26,	4,28,	11,24,	3,21,
8	44,	49,	44,	38,	60,	30,	45,	46,	45,	33,
	59,63	55,77	53,71	66,78	75,90	41,76	79,80	58,63	61,73	42,73
	2,22,	23,41,	8,27,	12,29,	10,25,	9,23,	12,24,	4,22,	5,29,	7,27,
9	57,	54,	50,	48,	42,	40,	42,	37,	46,	45,
	66,80	69,73	61,74	69,79	54,78	52,69	53,74	43,70	56,67	59,72

Вспомогательные материалы для выполнения контрольной работы

Радиоактивность (от лат. radius - луч и activus - действенный) - это свойство атомных ядер некоторых химических элементов самопроизвольно (т.е. без каких-либо внешних воздействий) превращаться в ядра других элементов с испусканием особого рода излучений, называемых радиоактивными. Само явление называется радиоактивным распадом.

Постоянная распада λ для определенного радиоизотопа (синоним - радионуклид) показывает какая доля ядер распадается в единицу времени.

Постоянную распада выражают в обратных единицах времени: c^{-1} , мин. u^{-1} , ч. u^{-1} и т.д., чтобы показать, что количество радиоактивных ядер не растет, а убывает.

Основной закон радиоактивного распада устанавливает: за единицу времени распадается всегда одна и та же доля имеющихся в наличии ядер.

Математически этот закон выражается уравнением:

$$N_t = N_O \cdot e^{-\lambda t}, \tag{1}$$

где N_t - число радиоактивных ядер, оставшихся по прошествии времени t; N_O - исходное число ядер в момент времени $t=0\ (N_o>N_t)$;

е - основание натуральных логарифмов (е = 2,72);

λ - постоянная радиоактивного распада;

t – время распада.

Период полураспада (Т) - это отрезок времени, в течение которого распадается половина исходного количества ядер радионуклида. Величина Т специфична для каждого радионуклида, например, 90 Sr - 28 лет; 14 C - 5600 лет; 131 J- 8 суток (см. Приложения, табл. 1).

Связь между Т и λ выводится из (1).

При t = T и
$$N_t = \frac{N_o}{2}$$
 получим $\frac{N_o}{2} = N_o e^{-\lambda t}$.

Сократив N₀ и взяв натуральный логарифм, получим:

$$\lambda T = \ln 2$$
, т.е. $\lambda T = 0,693$, откуда $\lambda = \frac{0,693}{T}$ или $T = \frac{0,693}{\lambda}$.

Заменив λ в (1) ее значением, получим:

$$N_t = N_O * e^{-0.693*t}$$
 (2)

Количество радиоактивного вещества обычно выражается не в единицах массы (грамм, миллиграмм и др.), а в единицах активности (радиоактивности) данного вещества.

Радиоактивность — это самопроизвольное превращение (распад) атомных ядер радионуклидов, приводящее к изменению их атомного номера и массового числа.

Активность (A) радиоактивного изотопа – величина, измеряемая числом радиоактивных распадов в единицу времени.

Согласно закону радиоактивного распада активность пропорциональна количеству радиоактивных ядер:

$$A = \lambda N, \qquad (3)$$

где λ - постоянная радиоактивного распада;

N – радиоактивных ядер в данный момент времени.

Отсюда следует, что величина активности радионуклида может служить мерой его количества:

$$N = A / \lambda \tag{4}$$

Активность изменяется во времени в соответствии со значением постоянной распада λ данного изотопа:

$$A_t = A_0 \cdot e^{-\lambda t} \tag{5}$$

После соответствующих преобразований (см. формулу 2) получим: -0.693*t

$$A_t = A_O * e^{-T}$$
 (6)

Единицей активности в системе единиц (СИ) служит распад в секунду (расп/с). Этой единице присвоено наименование **беккерель** (**Бк**):

$$1 \, \text{Б} \kappa = 1 \, \text{рас} \pi / \text{c}$$

Внесистемная международная единица активности — **кюри (Ки)** - это такое количество любого радиоактивного вещества, в котором число радиоактивных распадов в секунду равно $3,7 \cdot 10^{10}$. Единица кюри соответствует радиоактивности $1 \, \Gamma^{226} Ra$.

Для того, чтобы по активности радиоизотопа A, имеющейся в данный момент времени, определить, чему она равнялась t времени тому назад (т.е. -0.693*t

найти Ao), надо уравнение (6) преобразовать и вместо $A_t = A_o * e^{-T}$

написать
$$A_o = A_t * e^{\dfrac{0.693*t}{T}}$$
 .

Зная T, а также промежуток времени, который прошел от A_o до A_t , сначала вычисляют чему равно λt , а затем $e^{-\lambda t}$ и $e^{\lambda t}$. Значение величин e^{-x} и e^x (при x от 0 до 9,4) приведено в специальных таблицах показательной функции.

Однако в практике радиобиологических лабораторий чаще пользуются таблицей поправочных коэффициентов, разработанной И.Н. Верховской (см. Приложения, табл. 2), в которой по величине отношения $\frac{t}{T}$ находят соответствующий коэффициент K_0 .

Пример. Известно, что удельная активность препарата 131 Ј на 18 сентября составляла 2 мКи/мл. Рассчитать удельную активность по состоянию на 24 сентября.

Известна начальная активность A_o , а также время распада t (с 18.09 по 24.09 прошло 6 суток.

Период полураспада (T) 131 J равен 8 суток (см. Приложения, табл. 1).

Отношение
$$\frac{t}{T} = \frac{6}{8} = 0.75$$
.

Находим K_0 (см. Приложения, табл. 2). Отношению 0,75 соответствует коэффициент 1,68. Для определения A_t следует величину A_0 разделить на 1,68. Частное от деления составит 1,190 мКи/мл.

ПРИЛОЖЕНИЯ

1. Характеристика важнейших радионуклидов

Радионуклиды		Период полу-	полу-			Гамма- постоян-	
Сим- вол	Название	распада, Т	бета-	гамма-	альфа-	ная, Кү	
³ H	Водород	12,5 лет	0,018	-	-	-	
¹⁴ C	Углерод	5600 лет	0,155	-	-	-	
²⁴ Na	Натрий	15,0 час	1,90	1,37;2,75	-	19,06	
³² P	Фосфор	14,3 суток	1,708	-	-	-	
³⁵ S	Cepa	87,1 суток	0,167	-	-	-	
⁴⁰ K	Калий	1,3*10 ⁹ лет	1,32 (80%)	1,46 (12%)	-	0,81	
⁴⁵ Ca	Кальций	152 суток	0,254	-	-	-	
⁵⁹ Fe	Железо	45,1 суток	0,271 (50%) 0,462 (50%)	1,1 (56,7 %) 1,29 (43%)		6,25	
⁶⁰ Co	Кобальт	5,27 лет	0,3 (~100%)	1,17 (100%) 1,33 (100%)	-	13,3	
⁹⁰ Sr	Стронций	28 лет	0,61	-	-	-	
¹³¹ J	Йод	8 суток	0,60	0,36		2,3	
¹³⁷ Cs	Цезий	30 лет	0,51 (92%) 1,17 (8%)	0,66 (92%)		3,5	
²²⁶ Ra	Радий	1620 лет	-	0,61	4,78	8,4	

2. Значение поправочного коэффициента на радиоактивный распад $K=e^{0.693\frac{t}{T}}$ для различных значений времени t, выраженного в долях периода полураспада T (по И.Н. Верховской)

$\frac{t}{T}$	K	$\frac{t}{T}$	K	$\frac{t}{T}$	K
1	2	3	4	5	6
0,00	1,00	0,39	1,31	0,78	1,71
0,01	1,007	0,40	1,32	0,79	1,72
0,02	1,01	0,41	1,33	0,80	1,73
0,03	1,02	0,42	1,34	0,81	1,74
0,04	1,03	0,43	1,34	0,82	1,75
0,05	1,03	0,44	1,35	0,83	1,77
0,06	1,04	0,45	1,36	0,84	1,79
0,07	1,05	0,46	1,37	0,85	1,80
0,08	1,06	0,47	1,38	0,86	1,81

$\frac{t}{T}$	К	$\frac{t}{T}$	K	$\frac{t}{T}$	K
0,09	1,06	0,48	1,39	0,87	1,82
0,10	1,07	0,49	1,40	0,88	1,84
0,11	1,08	0,50	1,41	0,89	1,85
0,12	1,09	0,51	1,42	0,90	1,86
0,13	1,10	0,52	1,43	0,91	1,88
0,14	1,11	0,53	1,44	0,92	1,89
0,15	1,11	0,54	1,45	0,93	1,90
0,16	1,12	0,55	1,46	0,94	1,92
0,17	1,13	0,56	1,47	0,95	1,93
0,18	1,14	0,57	1,49	0,96	1,94
0,19	1,14	0,58	1,50	0,97	1,95
0,20	1,15	0,59	1,51	0,98	1,97
0,21	1,16	0,60	1,52	0,99	1,99
0,22	1,16	0,61	1,53	1,00	2,00
0,23	1,17	0,62	1,54	1,01	2,01
0,24	1,18	0,63	1,55	1,02	2,02
0,25	1,19	0,64	1,56	1,03	2,03
0,26	1,19	0,65	1,57	1,04	2,04
0,27	1,20	0,66	1,58	1,05	2,05
0,28	1,21	0,67	1,59	1,06	2,07
0,29	1,22	0,68	1,60	1,07	2,09
0,30	1,23	0,69	1,61	1,08	2,10
0,31	1,24	0,70	1,62	1,09	2,11
0,32	1,25	0,71	1,63	1,10	2,13
0,33	1,25	0,72	1,64	1,11	2,14
0,34	1,26	0,73	1,65	1,12	2,15
0,35	1,27	0,74	1,67	1,13	2,17
0,36	1,28	0,75	1,68	1,14	2,19
0,37	1,29	0,76	1,69	1,15	2,20
0,38	1,30	0,77	1,70	1,16	2,22

ОГЛАВЛЕНИЕ

Раздел 1. ОБЩИЕ МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ИЗУЧЕНИЮ ДИСЦИП.	ЛИНЫ3
1.1 Цель и задачи дисциплины	3
1.2 Библиографический список	4
1.3 Распределение учебного времени по модулям (разделам) и темам дис	:циплины5
Раздел 2. СОДЕРЖАНИЕ УЧЕБНЫХ МОДУЛЕЙ ДИСЦИПЛИНЫ И МЕТОДИ	
УКАЗАНИЯ ПО ИХ ИЗУЧЕНИЮ	
Раздел 3. ЗАДАНИЯ ДЛЯ КОНТРОЛЬНОЙ РАБОТЫ И МЕТОДИЧЕСКИЕ	
ПО ЕЕ ВЫПОЛНЕНИЮ.	16
3.1 Методические указания по выполнению контрольной работы	
3.2 Задания для контрольной работы	16
ПРИЛОЖЕНИЯ	24